Voronoi Diagram for Convex Polygonal Sites with Convex Polygon-Offset Distance Function
نویسندگان
چکیده
The concept of convex polygon-offset distance function was introduced in 2001 by Barequet, Dickerson, and Goodrich. Using this notion of point-to-point distance, they showed how to compute the corresponding nearestand farthest-site Voronoi diagram for a set of points. In this paper we generalize the polygon-offset distance function to be from a point to any convex object with respect to an m-sided convex polygon, and study the nearestand farthest-site Voronoi diagrams for sets of line segments and convex polygons. We show that the combinatorial complexity of the nearest-site Voronoi diagram of n disjoint line segments is O(nm), which is asymptotically equal to that of the Voronoi diagram of n point sites with respect to the same distance function. In addition, we generalize this result to the Voronoi diagram of disjoint convex polygonal sites. We show that the combinatorial complexity of the nearest-site Voronoi diagram of n convex polygonal sites, each having at most k sides, is O(n(m + k)). Finally, we show that the corresponding farthest-site Voronoi diagram is a tree-like structure with the same combinatorial complexity.
منابع مشابه
Voronoi Diagrams for Convex Polygon-Offset Distance Functions
In this paper we develop the concept of a convex polygon-offset distance function. Using offset as a notion of distance, we show how to compute the corresponding nearestand furthest-site Voronoi diagrams of point sites in the plane. We provide nearoptimal deterministic O(n(log n + log m) + m)-time algorithms, where n is the number of points and m is the complexity of the underlying polygon, for...
متن کاملGeneralized Source Shortest Paths on Polyhedral Surfaces
We present an algorithm for computing shortest paths and distances from a single generalized source (point, segment, polygonal chain or polygon) to any query point on a possibly non-convex polyhedral surface. The algorithm also handles the case in which polygonal chain or polygon obstacles on the polyhedral surface are allowed. Moreover, it easily extends to the case of several generalized sour...
متن کاملThe hausdorff voronoi diagram of polygonal objects: a divide and conquer approach
We study the Hausdorff Voronoi diagram of a set S of polygonal objects in the plane, a generalization of Voronoi diagrams based on the maximum distance of a point from a polygon, and show that it is equivalent to the Voronoi diagram of S under the Hausdorff distance function. We investigate the structural and combinatorial properties of the Hausdorff Voronoi diagram and give a divide and conque...
متن کاملComputing generalized higher-order Voronoi diagrams on triangulated surfaces
We present an algorithm for computing exact shortest paths, and consequently distance functions, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex triangulated polyhedral surface. The algorithm is generalized to the case when a set of generalized sites is considered, providing their distance field that implicitly represents the Voronoi diag...
متن کاملPolygonal Approximation of Voronoi Diagrams of a Set of Triangles in Three Dimensions
We describe a robust adaptive marching tetrahedra type algorithm for constructing a polygonal approximation of the Voronoi Diagram of an arbitrary set of triangles in three dimensions. Space is adaptively subdivided into a set of tetrahedral cells, and the set of Voronoi regions which intersect each cell is determined exactly using a simple primitive we introduce. We obtain a small number of di...
متن کامل